
1

CSC 128
TOPIC 6 : ARRAY

By : MOHD SAIFULNIZAM ABU BAKAR

2

COURSE
OUTLINE

At the end of this chapter, you should be

able to:

• Understand the concept of array.

• Perform the array declaration and

initialization.

• Apply on how to access elements in an

array.

• Perform operations (summation, maximum

and minimum) in an array.

• Perform passing array to function.

3

INTRODUCTION

• In C++ programming, an array is a data structure. It is process of group

the same categories of data.

• Array is a collection of data of the same data type. An array allows us to

group and store same variables which have a same data type.

• Usually a variable can hold one value at a time, but by using an array,

we can store more than one value in a single variable.

4

INTRODUCTION (CONT.)

• Figure 6.1 shows the difference between variable and array.

5

INTRODUCTION (CONT.)

• Figure 6.2 shows the arrays for variables-salary, name and staff ID.

6

INTRODUCTION (CONT.)

• An array can store many values, and each of the values is known as an

element and has its own array index that can be used to access it.

• A variable can be easily retrieved by referring to the index.

• An array index is also known as subscripts.

• A subscript is a number that indicates the position of a particular array

element that is being used.

7

ARRAY DECLARATION

• As in normal programming steps, we have to declare the entire variable

before we use it. Like normal variables, arrays also have to be declared.

• An array can be declared as:

datatype arrayName[size];

❑ For array declarations, firstly, type any simple data type, continue with

arrayName, with any legal identifier, and the size (in square bracket).

❑ The size represents the number of elements the array contains.

8

ARRAY DECLARATION (CONT.)

▪ Example of array declaration statement:

a) int listNumber [100];

▪ the array named listNumber which reserve 100 elements of integer

values.

b)char codeId [6];

▪ the array reserves 6 element of characters named codeId.

9

ARRAY INITIALIZATION

❑ In C++ programming, we can assign or initialize values to the

array. Initialization means assigning values to an array.

❑The format to write the array initialization is:

datatype arrayName[size]={elements};

▪ An array’s initial values are written using curly brackets

▪ { } and commas (,) to differentiate each element in the array as

shown in the following example.

10

ARRAY INITIALIZATION (CONT.)

11

ARRAY INITIALIZATION

▪ We can also initialize the values to an array without declaring the

size of the array.

▪ The number of elements in an array can define the size of an

array as shown in Example 6.3.

▪ This means we can declare an array with or without size, but we

must initialize the values to it.

▪ There can also be a situation whereby we have declared the size

of an array with 6 and initialized the values for 3 elements only—

the compiler will assume the next three elements are zero as

shown in Example 6.4.

12

ARRAY INITIALIZATION (CONT.)

13

ARRAY INITIALIZATION (CONT.)

14

RESTRICTIONS IN ARRAY OPERATION

▪ There are some restrictions in array operation that we should

consider in a few situations.

▪ In the first situation, an error message will appear once we want

to copy one array to another array as shown in Example 6.5.

15

RESTRICTIONS IN ARRAY OPERATION (CONT.)

▪ We will also have a problem once we want to insert values into

an array. We cannot insert or read data to an array using the

normal way.

▪ For the solution, we have to insert data to an array using the

looping method as shown in Example 6.6.

16

RESTRICTIONS IN ARRAY OPERATION (CONT.)

▪ In another situation, we have to specify the index number once to

retrieve the value from an array or it will display an error

message. Example 6.7 shows the solution for the situation.

17

ACCESSING ARRAY ELEMENTS

▪ The for loop is commonly used to manipulate all the operations

in arrays. Usually, with the iteration or loop process, it will make

the process easier because it allows us to access the elements

by referring to the subscript in the sequence.

▪ Besides using for loop to perform the accessing process, we

also can access and initialize the elements using the various

methods as shown in Example 6.8.

18

ACCESSING ARRAY ELEMENTS (CONT.)

19

ACCESSING ARRAY ELEMENTS (CONT.)

▪ Besides all the methods shown, we can use other ways such as

the for loop to initialize or access arrays. Example 6.9 shows the

general form of how to read elements into an array.

▪ As in a normal iteration process, we have to define the for loop

argument based on the array size.

▪ As usual, we have to start the iteration with zero (0), and stop the

loop once we reach the arraysize-1.

▪ The counter for the loop should be increased by one with each

iteration.

20

ACCESSING ARRAY ELEMENTS (CONT.)

▪ Example 6.10 shows the general form to display the array’s

contents. Here, we will also use the for loop method to display

all the elements of an array by sequence

21

ACCESSING ARRAY ELEMENTS (CONT.)

▪ Example 6.11
shows a
complete C++
program that
creates an array
and display its
contents. This
program will have
an array with 10
elements that will
be initialized with
values and then
display them.

22

ACCESSING ARRAY ELEMENTS (CONT.)

▪ Example 6.12 shows a complete C++ program that creates an

array and displays its contents.

▪ The program will have two arrays, named StudentNo and

Student_Marks. Both arrays will store 3 values each.

▪ The program will prompt the user to insert the values for the

arrays.

▪ Then, the program will display the contents of the arrays in table

form as shown in the output.

23

ACCESSING ARRAY ELEMENTS (CONT.)

24

ACCESSING ARRAY ELEMENTS (CONT.)

▪ The program in Example 6.13 will declare an array named

EvenList [] with 10 elements in it.

▪ The array will store 10 values consisting of even numbers that

are less than 20, then display them.

▪ Then, the program will identify the even numbers from the list of

numbers entered by the user.

25

ACCESSING ARRAY ELEMENTS (CONT.)

26

ARRAY OPERATIONS

▪ In programming, we can perform a

few operations to solve problems

in arrays.

▪ These operations include

summation, finding the minimum

and maximum values, searching,

deleting, merging, sorting,

traversing, and inserting.

▪ These operations are shown in

Figure 6.7.

27

TRAVERSING

▪ Traversing is an operation whereby each element in an array

is accessed for a specific purpose.

▪ Actually, in the traversal operation, we will use the values in

many programs because it is a basic operation that we have

discussed before.

▪ The process of printing the elements, and calculations between

the elements are all examples of the traversal operation.

28

INSERTING

▪ Inserting is a process of adding a new element into an

existing array.

▪ We can add the element in the beginning, middle, or at the end of

the array.

▪ The inserting process can be applicable only if the size that has

been declared is large enough. For example, an array with size 5

has only 3 elements initialized to it. In this case, we can apply the

insertion process.

▪ However, if there is not enough space (size) available, then we

cannot proceed with the operation.

29

SEARCHING

▪ Searching means the process of finding an element in the

array.

▪ If the element is in the array, the location or the subscript of the

element will be displayed and if the element is not available in

the array, an appropriate message will be displayed.

▪ There are two types of searching methods available—linear

search and binary search.

30

SUMMATION

▪ Summation is a process of adding two or more values

together.

▪ So, in arrays, summation can be performed to find the total of the

values in an array.

▪ Besides that, summation can also be done between any

elements in an array as will be discussed in Example 6.15.

31

SUMMATION (CONT.)

32

SUMMATION (CONT.)

▪ Example 6.16 shows a program segment for summation

operation to find the total of an array price[].

▪ Here, for calculating the total of the values in an array, we have

declared a variable to accumulate the total.

▪ The variable should be initialized to zero (0) before we start to

accumulate the value.

33

SUMMATION (CONT.)

34

FINDING THE MAXIMUM

▪ For finding the largest value in an array, we can use the

maximum operation, which will compare each element in an

array to find the largest value.

▪ Example 6.18 shows the general form to find the largest value.

We will use for loops and if methods to check and compare each

of the values in the array to find the maximum value.

▪ In the operation, firstly, we have to define a variable named

MaxIndext and assign zero (0) to it.

▪ Then, we will start to compare the values in the array using the

sequence until we fulfil the objective to find the largest value.

35

FINDING THE MAXIMUM

▪ Example 6.18 shows the general form to find the largest value.

36

FINDING THE MAXIMUM

37

FINDING THE MINIMUM

▪ We can find the lowest value in an array using the same steps for

finding the maximum value. Here also, the operation will compare

each element in an array to find the lowest value.

▪ Example 6.20 shows the general form to find the lowest value in

an array. We will use for loops and if methods to check and

compare each of the values in the array to find the minimum

value.

38

FINDING THE MINIMUM

39

PASSING ARRAY TO FUNCTION

▪ Arrays can also apply in functions in C++ program.

▪ An array can be passed as a parameter in a function. Example

6.22 shows the array usage in a function.

▪ The program shows that a function named calculateTotal()

receives a parameter of type array.

▪ The function will receive the values in the array, then calculate

the total. It returns the total to the main function.

40

PASSING ARRAY TO FUNCTION

41

CONCLUSION

▪ An array is a collection of similar data type value.

▪ In C++ programming, array is also known as a simple data

structure.

▪ Array will store the group data for a temporary basis in memory.

▪ Each data in the array is stored in a sequence and has its own

address that known as index. Index is also called as subscript.

▪ Summation, and finding the maximum and minimum values, are

some common operations of an array method.

	Title
	Slide 1: Csc 128
	Slide 2: Course outline
	Slide 3: INTRODUCTION
	Slide 4: Introduction (cont.)
	Slide 5: Introduction (cont.)
	Slide 6: Introduction (cont.)

	Array Declaration
	Slide 7: Array Declaration
	Slide 8: Array Declaration (cont.)

	Array Initialization
	Slide 9: Array Initialization
	Slide 10: Array Initialization (cont.)
	Slide 11: Array Initialization
	Slide 12: Array Initialization (cont.)
	Slide 13: Array Initialization (cont.)
	Slide 14: Restrictions in Array Operation
	Slide 15: Restrictions in Array Operation (cont.)
	Slide 16: Restrictions in Array Operation (cont.)

	Accessing Array Elements
	Slide 17: Accessing Array Elements
	Slide 18: Accessing Array Elements (cont.)
	Slide 19: Accessing Array Elements (cont.)
	Slide 20: Accessing Array Elements (cont.)
	Slide 21: Accessing Array Elements (cont.)
	Slide 22: Accessing Array Elements (cont.)
	Slide 23: Accessing Array Elements (cont.)
	Slide 24: Accessing Array Elements (cont.)
	Slide 25: Accessing Array Elements (cont.)

	Array Operations
	Slide 26: Array Operations
	Slide 27: Traversing
	Slide 28: Inserting
	Slide 29: Searching
	Slide 30: Summation
	Slide 31: Summation (cont.)
	Slide 32: Summation (cont.)
	Slide 33: Summation (cont.)
	Slide 34: Finding the Maximum
	Slide 35: Finding the Maximum
	Slide 36: Finding the Maximum
	Slide 37: Finding the Minimum
	Slide 38: Finding the Minimum
	Slide 39: Passing Array to Function
	Slide 40: Passing Array to Function

	Conclusion
	Slide 41: Conclusion

